Essential items:
e The URL of a repo containing the source code
https://github.com/zer0-os/zBanc/tree/dynamic-upgrader

e Please invite the GitHub users @david-oz and @tintinweb to the repo

https://github.com/zer0-os/zBanc/commit/8falaefea6e915529¢30f46ec10db7702c8114c
4

e The commit hash to be reviewed (OK if this is changing until March 1st)

https://github.com/zer0-os/zBanc/commit/48da0ac1eebbe31a74742f1ae4281b156f03a4
bc

e Alist of the files in scope and out of scope
contracts/converter/types/dynamic-liquid-token/DynamicLiquid TokenConverter
contracts/converter/types/dynamic-liquid-token/DynamicLiquid TokenConverterFactory
contracts/converter/ConverterUpgrader.sol (added handling new converterType 3)

e Documentation describing the intended functionality of the system

The DynamicLiquidTokenConverter does everything that Bancor’s LiquidTokenConverter
does, with the added functionality of changing the conversion weight.

To support upgrading the DLTC, we’ve followed the same pattern as the
LiquidityPoolV2Converter for upgrading stateful converters:

We’'ve made the DLTC converter type 3, and handled the typed data for it in the
ConverterUpgrader.

e Alist of the key risks for us to ensure are mitigated

The DLTC should correctly and securely convert to and from token and reserve even
after changing the weight settings.

The DLTC should successfully upgrade with the DLTC state variables and
ConverterBase state correctly moved to the new converter.

DLTC settings are properly validated and don’t lead to dangerous rounding problems
when above/below certain values, such as the PPM_RESOLTION

e Names and emails of the key personnel we will work with during the engagement

Damien Burbine
damienburbine@gmail.com9


mailto:damienburbine@gmail.com

Design and Intended Functionality -

The DynamicLiquidTokenConverter (DLTC) does everything that Bancor’s
LiquidTokenConverter does, with the added functionality of changing the conversion weight.

The DLTC owner should be able to change the conversion weight by the defined step, and the
issuance curve should accurately change in response.

Users should be able to create new DLTCs by accessing the DLTCFactory through the
DynamicContractRegistry

Any user should be able to convert between reserves based on the bancor formula and
accurately after the weights have been updated by an owner.

The DLTC owner should be able to set its state variables before activation, but after activation
only the upgrader should be able to set it (the current commit only allows setting when inactive).

The DLTC owner should be able to initiate an upgrade, and the reserves and settings should
successfully transfer.

Below is a diagram for the upgrade process for a DLTC. It follows the bancor patterns for
upgrading. To handle this, we deploy our own ConverterUpgrader and ContractRegistry owned
by zerO admins who can register new addresses. We do not deploy a BancorNetwork,
BancorFormula, or any other contracts in the environment, accessing the bancor deployments
instead.

The DynamicContractRegistry (DCR) we deploy has a setting for the bancor ContractRegistry
reference, so that a zer0 admin can maintain access to all the contracts there including the
BancorFormula - this needs vetted as the DLTCs should not lose functionality due to this
maintenance process.

The DCR only holds the ConverterUpgrader and DLTCFactory addresses, any request for an
address it doesn’t have is instead read from the bancor registry.

DLTCs should not be able to access the bancor ConverterUpgrader or ConverterFactory, which
have the same names in both registries.

To upgrade, a zer0 admin sets a new DLTCFactory in the DCR, and then a DLTC owner can call
the upgrade() function, which tells the ConverterUpgrader to deploy and transfer reserves and
settings.



zer) admin

Deploys

New Converter
implementation

B. Network

Metwork

-| 8
o= Create Converter Accepts
a E Converter owner upgrades Ownership Converts
M
A
v v
E Calculates
o Dynamic Sets new COT‘NEFSiD-I"I
g Converter owner
] rate
[&]
g
b= Deploys
1]
(18
|- Deploys new
® converter and
= copies reserves
=1 + settings
A
L4 ¥ v
[y .
#| { Contract Reg;;tcntaés new " G.ra;sder Does not find
E Reqgistry addrers}s a%gdress Formula address
¥
z
L] Gets
= I_E:r‘;g?rl BancorFormula
e gistry address
o
Bancor Accesses

BancorFormula




Updates -

At the commit you started with, the ConverterUpgrader is not quite finished, it does not have the
correct factory to deploy the DLTC in the upgrade process, and it does not access our registry.
There is a new commit with the finished ConverterUpgrader and DynamicContractRegistry:

https://github.com/zer0-os/zBanc/commit/3d6943e82c¢167c1ae90fb437f9e3ed1a7a7al4c4

| understand you may not be able to fully switch commits, but perhaps you could reference this
new commit for at least just the ConverterUpgrader? That would be adequate for us. Hopefully
this actually helps more than it delays, as most of this stuff is already in the current commit,
except in a broken state that may be difficult to report on.


https://github.com/zer0-os/zBanc/commit/3d6943e82c167c1ae90fb437f9e3ed1a7a7a94c4

